4 Writing down the model

- What we really want: a production policy with minimum expected cost
- Let's write down the recursive representation of our model/diagram
- We can then solve this recursion by working backwards and determine the minimum expected cost and associated optimal policy
- Stages:

• States:

• Transition probability $p(m | n, t, x_t)$ of moving from state *n* to state *m* in stage *t* under decision x_t :

$$p(m|n,t,x_{t}) = \begin{cases} \frac{1}{4} & \text{if } m = \min\{n+x_{t}, 2\} \\ \frac{3}{4} & \text{if } m = \max\{n+x_{t}-2, 0\} \\ 0 & \sqrt[n]{w} \end{cases} \quad (d_{t} = \lambda - \mu, \frac{3}{4})$$

• Contribution $c(m | n, t, x_t)$ of moving from state *n* to state *m* in stage *t* under decision x_t :

	$\left(3x_{t}+1\min\{n+x_{t},2\}\right)$	$if m = min \{ n + x_{t}, 2 \}$	
$c(m n,t,x_t) = $	$3x_{t} + 1 \max \{ n + x_{t} - 2, 0 \}$	$f + 5 \max \{ 2 - (n + x_t), 0 \}$ $f = \max \{ n + x_t - 2, 0 \}$ If (n + x_t - 2, 0]	net and (1) = 0. :) < 2, then) botches of domand
		$if m = \max\left\{n + x_t - 2, 0\right\}$	are not mat, and $() = 2 - (n + \tilde{c}_{1})$
	not defined.	othernise	

• Allowable decisions *x*_t at stage *t* and state *n*:

Let
$$x_t = number of batches to produce in month t
 x_t must satisfy: $x_t \in \{0, 1\}$$$

• In words, the value-to-go $f_t(n)$ at stage *t* and state *n* is:

$$f_t(n) = \min total expected production and holding costfor months t, t+1, ... $\forall'n$ batches of inventory
at the start of month t
for t=1,2,3 and n=0,1,2$$

• Boundary conditions:

$$f_3(n) = 0$$
 for $n = 0, 1, 2$

• Value-to-go recursion:

$$f_{t}(n) = \min_{\substack{x_{t} \in \{0,1\}}} \left\{ \begin{array}{l} \frac{1}{4} \left[3z_{t} + |\min\{n+x_{t},2\} + f_{t+1}\left(\min\{n+x_{t},2\}\right) \right] \\ + \frac{3}{4} \left[3z_{t} + |\max\{n+z_{t}-2,0\} + 5\max\{2-(n+z_{t}),0\} \right] \\ + f_{t+1}\left(\max\{n+x_{t}-2,0\}\right) \right] \\ \end{array} \right\}$$

$$f_{or} t = 1,2 \text{ and } n = 0,1,2$$

• Desired value-to-go function value:

 $f_{1}(1)$

5 Interpreting the value-to-go function

- We can solve this recursion just like with a deterministic DP: start at the boundary conditions and work backwards
- For this problem, we get the following value-to-go function values $f_t(n)$ for t = 1, 2 and n = 0, 1, 2, as well as the decision x_t^* that attained each value:

t	п	$f_t(n)$	x_t^*
1	0	13.125	1
1	1	8.875	1
1	2	5.875	0
2	0	7	1
2	1	3.5	1
2	2	0.5	0
-			

• Based on this, what should the company's policy be?

Month 1:	n= =)	$ f_1(1) = 8.875 \\ x_1^* = 1 $ } produce 1 batch.
Month 2:	If n=2,	$f_a(a) = 0.5$ $z \Rightarrow produce 0 batches x_a^* = 0 z \Rightarrow produce 0 batches$
	IF n=0,	$f_2(0) = 7$ $z \Rightarrow produce 1 batch.$ $z_2^* = 1$
What is the company	<i>i</i> 's total expected cost?	$f_{1}(1) = 8.875$

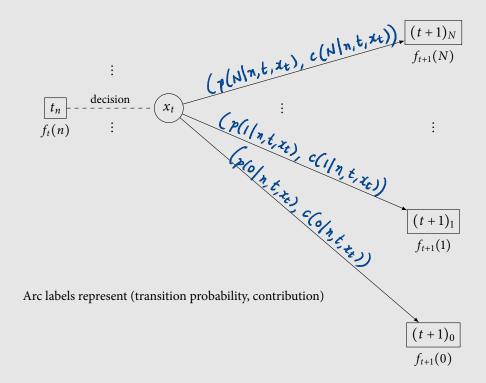
• What is the company's total expected cost?

 $f_{1}(1) = 8.875$

6 Stochastic dynamic programs, more generally

Stochastic dynamic program

- **Stages** *t* = 1, 2, ..., *T* and **states** *n* = 0, 1, 2, ..., *N*
- Allowable **decisions** *x*_{*t*} at each stage *t* and state *n*
- Transition probability $p(m | n, t, x_t)$ of moving from state *n* to state *m* in stage *t* under decision x_t
- Contribution $c(m | n, t, x_t)$ for moving from state *n* to state *m* in stage *t* under decision x_t



- Value-to-go function $f_t(n)$ at each stage *t* and state *n*
- Boundary conditions on $f_T(n)$ for each state n
- **Recursion** on $f_t(n)$ at stage *t* and state *n*

$$f_t(n) = \min_{x_t \text{ allowable}} \left\{ \sum_{m=0}^N p(m \mid n, t, x_t) \Big[c(m \mid n, t, x_t) + f_{t+1}(m) \Big] \right\}$$
for $t = 1, 2, ..., T - 1$ and $n = 0, 1, ..., N$

• **Desired value-to-go**, usually $f_1(m)$ for some state m